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Abstrad-The problem of determining the equilibrium deflections of a beam with a tip mass. and
the frequency of infinitesimally small oscill'ltions about the beam's equilibrium state. E. is analyzed.
The beam is able to ellperiem:c nellurc along two normal din.'Ctions in space (thus. ne:'lure in any
direction) and torsion. Numeric'll solutions of the full. ntlnlim:ar be.lm st.ltic equilibrium equ'ltions
are obtain~'d by dir~'Ct integration of a two-point bl1und'lry value problem. The results obtained arc
compared with an appro:'limate perturhation e:'lpanSil1n solution. E-. for the equilihrium state E.
The frequencies 'Issociated with the smalloseillations .Iboul the equilihrilllll sl<lte are determind by
line'lri7ing the e\juations of motion ahout the e\juilihrium state••md by using a tmnsfer m'ltrill
technique on the resulting e\juatilll1s. The effect on the calculated fretluencies of using the 'Ippro:'li
male solulilln F.-. ohtained by a perturbation method (instead of lhe more e\act numerical solution
F. mentioned ahove) in the linearil.~'d ~'4u;ltions. is asses."''I.!. The use of an \;Iltermltive W.IY to
delermine an appro:'limation for the n;Hural fre\juem;ies of the system is also as.sess~'d. For this.
small motions arc assumed and the etluations of motion arc first expandcd abuul the undeforllled
state of lhe be.UIl. The undetilflllcd state is not ;1 st.Hie e1luilihrium slate if gravity is considered.
The resulting e1Iu;ltions. which contain only polynomial nonlinearities. arc then used to .m;llyl.e the
motion. After the e1luilihrium solution to thcse equations. f:- is delermin~'d by a perturhalion
e:'lpansion: these same equations ;Ire then linearized ahout /;- and the n;llural fre1luellcies arc also
delermined hy a transfer matri:'l teehni\jue. It is shown lhat the aprrollimation so ohtain....d for the
natural fr....\ju....ncies can be uns<ltisfactory for larg valu....s of th.... til' mass. All th r....sults oht"inl.'d
in this raper ar.... compar....d with puhlish....d finite et m....nts and with ....:'Iperim....ntal r sulls.

INTRODUCTION

Generally, a structure such as a beam can respond to external loads by exhibiting flexure
in any direction in space and torsion. For infinitesimally small deformations of prismatic
beams, the linear equations of motion disclose that flexural motions along the two principal
directions arc uncoupled. Moreover, if the axis of cross-sectional mass centers coincides
with the clastic axis, the linearized flexural and torsional motions are also uncoupled.

The investigation of the response of dynamical systems involves the determination of
eigenvalues associated with infinitesimally small motions about the system's equilibrium
states. When an equilibrium state is "smalr', one could determine such frequencies by first
replacing the full nonlinear differential equations of motion by a set of equations with
polynomial nonlinearities, truncated to a certain degree, and then applying Gulerkin's
method to the resulting equations. With N appropriate functions being chosen for the
Galcrkin procedure, both the equilibrium solution and the eigenvalues associated with the
perturbed motion would be determined for increasing values of N until convergence is
achieved (see. for example. Ormiston and Hodges. 1972: Dowell et 0/.. 1977: Crespo d,l
Silva and Hodges, 1986). [t should be noted that the results so obtained also depend on the
order of truncation of the expunded equutions. For larger equilibrium solutions. one would
expect that higher and higher order terms would have to be retained in the expanded
equations. in order to increase the accuracy of the results. Thus. to be strict, one should
also experiment with the level of truncation of the expanded equations in order to verify
convergence of the results.
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Fig. I. A beam segment. the inertial unit vector triad Ct. I'. ':1. and the section-lhed unit vectur triad
(~.ti.:l. .

In the present work. the problem of determining the natural frequencies associated
with infinitesimally small flexural-flexural oscillations ofa beam with a tip mass is addressed.
Special attention is given to the process of expanding the governing dilferential equations
of motion of the beam to determine the natural frequencies. This paper is organized in the
following way. First. the nonlinear equations of motion that are valid for arbitrary motion
(except that the strain must be small) involving bending/bending are formulated. Next. the
equilibrium configuration is determined from two methods: (I) from a numerical solution
of the two-point boundary v.tlue problem associated with the static p,lrt of the full nonlinear
equations of motion: and (2) from an approximate perturbation expansion of the static
part of the equations of motion about the undeformed state of the beam. The results
obtained are compared with each other. with experimental data available in Dowell and
Traybar (1975a.b) 'lI1d Dowell 1:1 til. (1977). and with ,I finite element analysis presented in
Hinnant and Hodges (19R7) and Ilauchau and Liu (1989). The natural frequencies associ
ated with infinitesimally slllall oscillations about the equilibrium state of the beam arc
determined by a transfer matrix method. based on a set of coupled equations obtained by
expansion of the full nonlinear dil1cn.:ntial equations of motion about their equilibrium
solution. This is done in the section entitled "Response Analysis". Following this. the
aCl:ural:Y of analyzing the nllltion with a set of nonlinear approximate equations. expanded
about the undcformed state of the beam. is then assessed.

EC)UATIONS OF MOTION

The difrerential equations governing the tlexuraH1cxural-torsional motion of incx
tensional be.lI11s. taking into account all the geometric nonlinearities in the system. were
fOrlllulated in Crespo da Silva and Glynn (1978a.b). and in Crespo da Silva (19118a.b) for
both extensional and inextensional beams. For the sake of completeness. <t brief derivation
of the equ,llions for an inextensional beam with a tip mass is presented below.

The beam is assumed to be initially stntight and untwisted. of length I. and of constant
mass m per unit length and constant stifrness D., = EI.,. D; = EI; and D~ = GJ. The qu,lIl
tities D., and D;. where E is Young's modulus for the material. and I., and I; are principal
cross-sectional area moments of inertia. are the bending stitrnesses for the beam while GJ
is its torsional stifrness. A schematic of the deformed beam is shown in Fig. I. Let III(s. I).

11'(.1'./) and 111'(.1'. I) denote the components along the inertial directions (x.y. =) of the
displacement of the beam's centroidal axis C (which is assumed to be coincident with the
beam's c1.tstic axis) of a cross-section S due to elastic deformation of the beam. Here. the
unit vectors along any direction arc denoted with "hats" (.i along x. etc.) as shown in Fig.
I : s is used to denote arc-length along the beam. non-dimensionalized by I: and I is the

normalized time given by t = r ../jj;/(mh where r is used to denote dimensional time. For
inextensional beams. (I +II')~+I"~+ Ir'~ == I where ( )' == I~( )/h. A lumped mass M. of
weight ~r.q. is located at the beam's tip at s = I. As can he inferred from Fig. I. the
gravitational force applied at s = I is equal to MgLI~ cos :x + =sin:x]. where :x is the angle
from the vertical axis to the direction .t~ == ~(O. I). Therefore. the virtual work associated
with the tip mass is equal to Jfq[(cos :l)<5r( I. I) + (sin :l) 1511'( I. t)].
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Fig. ~. Angles (0/1. /I. .pl used to describe the orientation of (~.~.:I relative to (.i..I'.:I.
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The unit vectors [~(s. t). ti(s. t). (s. t)] are aligned with the principal axes of the beam's
cross-section S at an arbitrary station s. when the beam is undeformed (and if warping were
neglected). The orientation of the unit vector triad (~. ti. () relative to the inertial unit vector
triad C\-•.1\:) is described by the three sllccessive rotations [lids. I). O(s. I). q,(s. I)] shown in
Fig. 2. If the effect of shear is neglected. it follows that

I"
tan 1/1 =--~

1+/1'

( I )

Letting /1, = DjD" and /1, = D) f)", the dil1'erential equations of motion can be
obtained from Hamillon's extended principle as in Crespo da Silva and Glynn (1978a). i.e.

where ;. is a Lagrange multiplier.

is the specific Lagrangean for the motion. normalized by D~W. Dots denote differentiation
with respect to non-dimensional time t. In the expression for the Lagrangean. p~ and f/; are
bending curvature components associated with the ti and ( directions. respectively. and p~

is the torsion. each norm'llized by 1//. The expression for the normalized curvature vector,
I' = II. ~+ 1I~'i +1':'. obtained by inspection of Fig. 2. is given by

p = (q,' - '/I' sin O)~+ (1/1' cos (} sin q, + 0' cos q,),; + (t/J' cos 0 cos q, - 0' sin q,)(. (3)

For simplicity. it is assumed that the beam is slender and that its torsional frequencies are
much higher than its flexural frequencies. so that the small effects of rotary inertia and
torsional dyn'lmics are neglected in eqn (2). The mass moments and products of inertia of
the tip mass are also neglected for simplicity. By carrying out the variations in eqn (2). the
differential equations of motion and a boundary condition equation governing the motion
of the beam arc readily obtained. The normalized differential equations of motion are
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(~.I, aJ J',~ ..-:!.. -" , -'.Gil - A" ~ . +.-11/ ~ ,+1.(1 +u) - u
ell ell

, ~ (Cl/J (~O. ')' .. mlG,.- A,,:;-;+A'I~+I.t· =r-.Pcosx
a a J

, A (Cl/J cO. ')' .. ml .G,,- A,,:;;---:+A/I-:;-;+1.1r =Ir- ./Psmx.
(Ir (W J>

,.1'1> =0.

(4)

(5)

The boundary condition equation obtained from eqn (2) can be written as

{(J;.(cjJ' - l/J' sin 0) i5cjJ +( Gil +i tft Ii) i5u+ ( G,. + i t~ ii_iP cos :x) i5l'

(G .At.. 'p' ). (II l" 1111 ) • ,+ "+t-'- II' - t Sin X Oil' - ,. - --, (~t·
IlII 1+U

( W'II,,). ,}- If" --I--; (~II' . . = O. i =O. I. (6)
+1I '~I

In the above equations

anu

(for k = '/J. o. Ip) (7)

The functions A". All ~tnU A.. are given as

(8)

A.. = [f1,.1'~ sin () - 1'" cos () sin 4' - {liP: cos 0 cos (p]'

All = ({l,p: sin (P-I'" cos IP)' -IVW·p~ cos O+P., sin () sin cjJ+{l,P: sin () cos tb]

A,~ = -/(I'~ - (fl .. - 1)/'ql';. (9)

Equations (4). (5) ,IOU (6). anu the constraint relation. (I +lI,)z+l',z+Ir'~ = t. govern
the l1exural-l1exur.d motions of a beam with a tip mass when the torsional frequencies arc
much higher than the bending frequencies.

By making usc of the cantilever boundary condition GII(I. r) = - (IHlm/)li( I. f). the
first of eqns (4) can be integruted once to yield

. I[ f.' I .. M .. NI CO]I.(S. t) = - -I-, 1I(.\'. f) dx+ -, /If I, f) + A" -;;-; + A" -;-; .+U. m ~ (/I
(10)

With l/J and 0 given by eqns (I). substitution of eqn (10) into the second and third of
eqns (4) yields the following integro-partial differential equations for c(s. f) and 11'(05. r):
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L~ u' [A,; -t.,(f u(y. t) dy+ ~~ u(l. t))Jr A G;(s. t) = f- ~: p cos:x

LI+~';~/~K"2) - Ib-I:·U·(f u(y./)dy+ ~U(l·t))r
"

A G~.(S./) = ~'- :: P sin iX. (11)

The boundary conditions for eqns (II) and (5), obtained directly from eqn (6). are

dO. t) = ...(0. t) = (·'(O. I) = ",'(0./) := 41(0.1) = p,,( I. t) :::: p;( 1./) = p~( 1. t) := O.

M M
G.( 1./) =P.· - -IIi"'( 1./) and G,.( I, I) = p,p,. - -I f( 1./).m . m

where p. and PI' are defined as P.· = P sin IX and p,. := (PIP.. ) cos :x.
With 11(0./) = O. the inextensibility condition yields for II(S./).

II(S.I) = C'(J!-L,·2- w·2-I)ds.
Ju

(12)

For the perturbation solution developed later. the vurktble 4J(s./) cun be eliminutcd
from eqns (II) by integrating cqn (5) with the boundary conditions IJ~(I./) = 0 and
41(0. I) =0 to obtain.

so that

.J.' .1." lJ fI.·-1 II (dp, = 'I' - 'I' Sin = - '/Jr ,p,,(x. 1)/', X./) x

t' (J - I i' IIcP(S./) := ""(x,/) sin O(x, I) dx - '-'~{l'- p,,(:<./)p,(X, I) d.~ dy.
u 1 U r

(13)

(14)

In the next St.'Ctions. the equilibrium state of the beam and the natural frequencies
associatt.'d with infinitesimally smull motions about the equilibrium are determined.

RESPONSE ANALYSIS

To unalyze the motion governed by eqns (II) and (5), the normalized deformations
l'(S./) and Ir(s, I), and the angle 4J(s. t) are expressed as

,;(s, I) :: t'.(s) +ds. I)

w(s, /) = w.(s) + w,(s, I)

4J(S./) "'" 4J~(s) +41,(5. I). (IS)

where L',(S, f), w,(s, f), and 41. (,f. I). denote infinitesimally small perturbations about the
equilibrium solution (t·~. IV~, 4J~). The subscript "en will be used from now on to denote an
equilibrium value for the corresponding time dependent variable

Equilihrium soill/ion E
The equilibrium solution, E, satisfies the differential equations of motion with the

dynamic terms in eqns (II) identically equal to zero. With the boundary conditions
GIAI) "'" (J,P, and G.~(I) - p•• eqns (II) can be integrated once to yield
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A~~ ~ [ml]
1+u; - GrAs) =P",P" 1+ M (I-s)

AII~ ~ [ml]
~-G.As)=p•. 1+ M(I-s) .

'II I-w~-

(16)

Equations (16) and (5) are a set of nonlinear, ordinary differential equations that will
be solved with the boundary conditions t·~(O) = n'~(O) = l';(O) = w;(O) = <p,.(O) = O. and
\11;0) = 0;(1) = <p;(I) =O. To detennine the equilibrium solution for the beam. a numerical
solution to these equations is sought. For this. it is convenient to express these equations
in terms of the angles [\11,(05). 0..(s). <PAs)]. Since

eqns (16) and (5) may be written as

t·; = cos 0, sin \II~

11'; = -sin 6... (17)

W.p~.· sin 0"- fl.,,· cos 0.. sin (p,. -11,1';.•. c05 0,. cos q".)' -II\.P,.[ I+ I~ (I -5)] cos \II•. cos 0,. = 0

(1'".. cos (P.· -IJ,.p~, sin (P,·)' + 0/;.1'". cos 0,. + 1)'1~ sin 0.. sin q,..

+IJ,P~.·sin 0,. cos <P•. )lp;-(fJ,.p,.sin 0.. sin \II.. +p". cos O,.{I + ':: (I-S)J = ()

( 18)

wherc 1',•.• 1'"•.• p~,. are the llormalized curvilture components at equilibrium obtained directly
from Cqll (3).

The determination of the equilibrium state of the system is now reduced to a two-point
boundilry-villue problem requiring the integration of eqns (IS). in conjunction with eqns
(17) to determine the stulic equilibrium deflections v.. (s) and w.(s). To this end. the following
states ure introduced

XI = t'.. ; X2 = W..

with the boundaryconditionsx,(O) =Ofori= 1•...• 6andx1(1) =.~ll(l) =x,,(I) =O.The
state equations x; = j;(x I.' .•• x,,) were integrated numerically using the double precision
IMSl routine DBVPFD (lMSl. 1987). The state x" = j .... with x~ = P~•. (.\·). was introduced
as a convenient WilY to determine the clastic angle of twist i'As). The routine DBVPFD
divides the interval 0 ~ s ~ I in a number of grid points. N. and computes the solution
until its estimated error is smaller than a specified value. The results obtained were essentially
insensitive to values of the error parameter smaller than about 10'" and for N greater than
about 20. Values of 10 -, 8 and 40. respectively. were used for these parameters. These values
provided at least six digit accuracy in the integration of the above differential equations.

In order to ilSSCSS the intlucncc of approximations on the equilibrium solution clOd on
the calculation of the natural frequencies of the system. an approximate solution. E*. to eqns
(I6) and eqns (5) is also generated by a perturbation technique. For this. the equilibrium
dctlections are assumed to be small and are expanded in a "book-keeping parameter" ,: as
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rAs) = eL',1 (5) +elr,l(s) + "', wAs) = eW,1 (5) +8lW~2(j) + .,'. Since eqn (14) discloses that
l/J = 0(e2). one then lets l/J.(s) =e2l/J,2+ "', With p" = ep"1 and Pw = ep•. ,. eqns (16) then
yield a set of differential equations for the variables t',I' W~I. etc, which are obtained by
equating the coefficients ofequal powers ofe to zero in the expanded equations, By applying
the given boundary conditions at the O(e) level, the solutions for L'~I (5) and "',I (5) are

[ , , ml 52, ]
L',,(S) =1','1 5-/2-5'/6+ M 24(5"-45+6)

and

The solutions for the differential equations at the O(e/) level depend on the solution obtained
from the previous levels. Dropping the book-keeping parameter e for convenience. the
O(r.') solutions for L',(.V) and "",(5). which were obtained with the aid of MACSYMA
(Pavellc and Wang. 1985: Symbolics, 1987: Rand. 1984), are

- 51"P';'r
V
,2 [C5 - 23{lr)s~ + (16IP. - 35)S4 + (126 -420fl•. ).v'

040".

+ (490fl. - 2MO),\·2 + 280( I - {I,.).v + I58{1,.

IOU/,-1)2 ~ ~ 1 ' ] , • ",t
- {I;. (S' - 7s + 21s - 35s' + 2Kv) + 0(/;') tcrms to M'

I ' [ S ",I, ] P!.5
2

~ 4 1 ,
II',(S) = 2fJ. S " 1- 3 + 12M (s' -4.\'+6) + 840 (k -21.~ +49s -35s" -28)

1'.1',75
2

[ ~ ~ 3-5040' (5{/,.- 23 )s +(161-35{J.)s +(l26{J... -420)s

+ (490 - 280{J},)sl +280(fI,,' - I)s+ 168

W(P. - I) l ~ 4 3 ' 1 3 • ml- P
1

(s -7s +21s -35s'+28s)_ +O(e )termstOi-i' (20)

From eqns (14) and (3), the corresponding OCr. 3) solution for the beam's torsion
described in tcrms of its elastic angle of twist Y. is

.. (~) ~ r"L (n) dn = "~~·_Y!.~.=.1J. {~~=.!t::~ _'!.~ (.v -_~.t~ + (ml)2 (5 - I~~-=-!}
I' . JII"'" {J;, 12 M 20 M 120 '

(21 )

To O(e). the angle 4>, is given by

The O(r.') terms in ",1/M in eqns (20) are quitc lengthy and. for this reason. are not
reproduced here. If the terms in ",1/ M are neglected, the above 0(e 3

) solutions are the same
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Fig. 3. Equilibrium tip deflection L',(I) versus the angle x for D.!(mgl-') = 16.69 and p.= 0.473.
0.946 and 1.419 [--eqns (17) and (18): ••• O(E); -.-.- O{Es)l.
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Fig. 4. Equilibrium lip uelleclion II', {I ) versus Ihe angle x 1<lr D./(m,ql I) '" 16.69 and I' '" 0.473.
0.946 ;tnu 1.41lJ [--eqns (17) and (Ill): ••• D{I;'); -. -.- O{I;')I.
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Fig. S. Angle 4>.{I). versus Ihe angle x for D./{tII.q/') '" 16.69 anu p ... 0.473. 0.946 and 1.419
[-- '-"Ins (l7) and (IS); ••• O{r.'); -. -. - O{r.'l/.

ones obtained in Hodges el al. (1988). For large tip masses. the effect of these terms is very
small. To assess the accuracy of the perturbation solution. an 0(6') equilibrium solution
for tip weights up to about 24 times the weight of the beam. was also generated with the
aid of MACSYMA.

Figures 3-5 display the equilibrium tip deflections (',.( I). 11',.(1) and cP,.( I) versus ~ for
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M D.,
P,.· :: 15.0:20 fJ.. = 1.247, -I == -I' P == 16.69P. m mg-
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and for the values of P indicated. The parameter values indicated match the values in
Hinnant and Hodges (1987), for an aluminum beam of rectangular cross-section, with a
heavy tip mass, used in the experiments reported in Dowell and Traybar (1975a,b), and in
Dowell et al. (1977). The experimental points are included in these figures. The values of
p:: 0.473.0.946 and 1.419 correspond. respectively. to tip weights of I, 2 and 3 lb. used in
the experiments. which are about eight. 16. and 24 times the weight ofthe beam. In Fig. 5.
the third orientation angle <P..(l) [instead of the actual torsion i'..( I)] is plotted since it
corresponds to the 0(C;3) approximation for the angle measured in Dowell et al. (t977) [see
the first ofeqn (23) in Hodges ef al. (1988)].

The numerical solutions of eqns (16) and (5) shown in Figs 3-5 agree with the results
of a finite element analysis presented in Hinnant and Hodges (1987), They also agree with
the results ofa finite element analysis presented in Bauchau and Liu ( 1989). The perturbation
and the numerical results are also in very close agreement with the experimental results
mentioned above. In addition. the results obtained by neglecting the terms in milMare
nearly indistinguishable from those shown in the figures. For smaller values of P. the
simpler. O(I;J) solution is in very good agreement with the numerical solution. As seen in
Fig. 4. the beam's tip deflection when :x = 90' and P = 1.419 is 'lbout 40% of the length of
the beam. Even for such a large deflection, the error of the 0«(,-') approximate solution is
only about 8%.

Natural frequencies
To determine the mltun,1 freqllcncies WI associated with infinitesimally small motions

ahout tile equilibrium state of the hemn, eqns (II) and (5) lIrc Iincnri1.eu about the equi
librium dctermined above. For this, let

1/1(,';.1) = 1/1.. (,';) +1/1,(:;, t)

O(.\', t) = 0..(.\') + (J",(s. r)

¢(s. t) = 4>•. (s) +4),(s, t). (23)

With G,.(s, t) ~ G,... (s) +G,.•(S, f), G",(S. f) ~ G.....(.\') +G.... (s, t) and A.p(s. I) ~ A.p.. (s) +
A,~.(.'i, f), the following ex.prcssions for G",. G._, and A.", arc oblained by linearizing eqns (II)
and (5) in the infinilesimally small perturbations "',(s. t). O,(s, I) and cp,(s. t):

[
ml ]

1 fl"p" I + Xi (l-s)

G" = --_._----;---- (I I O. + f2cP. + 1.,0: + t.~I/1: + 1s<P~)' + ---,------- g(s. t)
cos 0,. cos 1/1.. cos 0,_ cos 1/1 ..

[II i" 1"1 if ]+ tan 1/1,., (} g(x, f) dx dy+ ;;;1 u g(s, I) ds .

G.., = - (J.p,. [ 1+ '~: (I - s) ] (0, J~:2~ii.. + l/J. cos "'.. tan 0..) - (sin "'.. t'ln O•. )G".

I
- "----(-J- [(t ,,0. +11<P, +1110: +IJ",:r + ,9 0, + /1114>. -/6 0: -I,"':+ f, L4J:]

cos ..

[I I r" M fl ]
-cos "'r tan Or, JII ,9(X, t) dx dy+ ",1 JQ 9(S, t) ds

.49 , = (I~O. +tlJcP,+ t I~O: + (\j"': - t S.p;+ flA'~ = O.

where

(24)



S7~ M. R. M. CRESPO DA SILVA et ai.

(25)

The coefficients Ii. for i = I•...• 15. are functions of the equilibrium values of the defor
mation variables only. Their expressions are given in the Appendix.

To calculate the frequencies Wi' one could make use of a number. N. of cantilever
modes for M =O. as in Hodges and Ormiston (1976). to replace the linearized counterpart
ofeqns (11) and (5) by 3N second-order differential equations. In this paper. the frequencies
W, are determined by direct numerical integration of a two-point boundary value problem
and by using a transfer matrix technique. as outlined below. The advantage of doing so is
that one can circumvent a series representation for the field variables and directly obtain a
set ofeigenfunctions. Each eigenfunction determined in this manner represents the linearized
motion for a particular mode.

By assuming a solution to the linearized equations as

"',(s./) = F",(s)e iw
,

O,(s. I) = F;,(s) eiw
,

t/J,(s. I) = F",(s) e;w,. (26)

~Ind by writing G,.,(s. t) = F(;Js) e""'. and G•.,(s. I) = F<i•. (s) e'''''. the following ordinary
dil1crential equations for the functions F",(s). F;,(.f) and F."Cf) are then obtained. after
making usc of the relations I" = cos 0 sin'" and I\" = -sin (J (note that. for simplicity in
notation. dummy variables of integration arc not written explicitly from now on).

w: r' (F" sin t/I,. sin (J. - f~ cos IP. cos 0•. ) d.\·JII

In eqns (27).

9:(05) = F", sin t/lr cos 0. + F;, cos t/I. sin Or'

The cantilever boundary conditions for eqns (27) are

(27)

(28)
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FH(O) = F.(O) = F.,(O) = F~(1) = F~(I) = F~(I) = O.

FG (I) = w~ M, fl (F. cos t/J~ cos o. - F/J sin t/J~ sin O~) ds,. mJo

, lvf il

FG (1) = -w--, F/JcosO~ds.•. m 0
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The eigenfunctions F.(s). FH(s) and F.,(s). and the frequencies Wi' are obtained by
direct integration of eqns (27). For this. a set of state variables is introduced so that these
integro-differential equations are written as a set of ordinary differential equations. The
following states are defined:

X4 = f (Ff/ sin t/J~ sin O~ - F. cos t/J. cos O~) ds

x, = f(F/JCost/J~sinO~+F.sint/J~coSO~)dS

(JJ~M

XII = F,.; + ,x4,. m

(29)

The cantilever boundary conditions for these states are x,(O) = 0 for i = 1•...• 6. and
x,(I) =0 for j = 7•...• 12.

Defining

(30)

where YI and Y2 are. respectively. 6 x I columns with Y, (0) =0 and Y~( I) =O. eqns (27) can
be wri tten as

x'(s) = A(s) x(s) + B(s)x( 1).

All the elements B,.i of the 12 x 12 matrix B are zero. except Bu. Bu and B~.s.

The solution to eqn (31) is

x(s) = et>(s)x(O) + [ <1I(s)f et>-'(t)B('f)dt]X(I).

where <1I(s) satisifes the differential equation

(31 )

(32)



576 M. R. M. CRESPO OA SILVA ~I aJ.

<!,'(s) = A(s)<!'(s) (33)

with the initial condition <!'(O) = I. the 12 x 12 identity matrix. Also. it is easily verified that

F(s) ~ <!'(s)f <!,-'(r)B(r)dr

satisfies the differential equation

r(s) = A (s)F(s) + B(s)

(34)

(35)

with F(O) = O. the 12 x 12 null matrix. Only the three elements B7,5. Bs,' and B9" in column
five of the matrix B(s) are non-zero.

From eqn (32) one obtains.

KUJ[ 0]
Ku y~(O)'

(36)

Equation (36) discloses that for y~(O) to be non-zero the characteristic equation det K~.~ = 0
for the 6 x 6 "transfer matrix" Ku has to be satisfied. The methodology presented above
provides an iterative technique for determining the natural frequencies. w. For this. one
chooses a starting value (1)* for (I). integrates eqns (33) and (35) numerically from s =0 to
s = t. calculates det (K~.~). which is dependent on CtJ. and then iterates on the value of (I)

ulltil Idet K~,zl is smaller than a small pre-.lssigned quantity. This procedure was
implemented using the IMSL pack<igc (IMSL. IlJX7) on a Sun 3 series computer. For chosen
values of

(

J M D~ )
{J ... {J. .• I. ,= "',' I P ., m my .

(J) was determined as a function of·~ by using the double precision IMSL routine DZREAL
to find the real zeros w. of the function defined as det (Ku(w». The routine DZREAL has
two convergence criteria. The first requires that the magnitude of the function be less than
a pre-selected value ERRABS. and the second requires that the relative change of two
successive approximations for w be less thun another pre-selected value. ERREL. Con
vergence is achieved when either criterion is sutisfied. The results obtained were essentially
insensitive to v.lIues of ERRABS and ERREL between 10 -~ and 10 "10, To determine K~.~.

each of the 12 columns u,(s) of eqn (33) was integrated from s = 0 to s = I. with all the
ekments of U,(Ol equal to zero except the one in the ith row. Integration of three more
differential equations. given by the fifth column of eqn (35). was performed to determine
the fifth column of the matrix F(I). The double precision IMSL routine DlVPAG. which
uses an implicit Adams-Moulton algorithm. was used to integrate the differential equations
with an error control parameter set to 10 -In. Again. no noticeable changes in the results
were detected for values of that control parameter as low as 10 -~.

A discussion of all the results is presented after the next section. where an alternative
calculation of the frequencies is presented and its validity is then assessed.

RESPONSE ANALYSIS BASED ON APPROXIMATE EQUATIONS OF MOTION EXPANDED
ABOUT TIlE UNDEFORMED STATE

Equations (II) arc valid for arbitmrily large deformations. as long as the stmins arc
infinitesimally small. An alternative technique to analyze the motion. valid for "small"
motions. consists of letting ds. f) = Ct'l (s. t) and Il'(s. f) = W'I (s. f) in eqns (II). with
4J = O(r.~) obtained from eqn (14) in terms of t'(s. f) and w(s. f). and then expanding eqns
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(II> at least to O(e). The resulting equations are then used to analyze the motion of the
beam. The O(e) expanded equations. obtained as indicated above. are given below. The
book-keeping parameter e. and the subscripts are omitted for convenience in the notation:

G~ = {- prr
m

- (I - P,.>[ w"il

t·"w" ds+ w
m f: r"w' dS]

(1 P): [i'i' ]'+ - r no" t"" w" ds ds - p.,.L"'(r' r" + w' w")'
p;. 0,

{ [ f. 1 i'], II' """'"'' ,G•. = -w +(I-Pr) l' .. t" W dS+t" 0 W L' ds

(I-P,.):[ "f'i' "" ]' "" ,,,,+ L' t" no ds ds - w (L' t" + no '" )
Pi' n f

",' i l [i" ,. " ].. M, fI " " •• }' ml+ -- (I' -+'" ')ds ds+ --- W (L' ·+w·) ds = li',- --P•..
2. n 2ml 0 M

The boundary conditions for these equations arc

L'(O. f) = 11'(0./) = L"(O./) = ",'(0. f) = o. l'''( I. t) = w"( 1./) = O.

M M
GA 1./) =p". - 1 1\'( t. f) and G,.( l.t) = p,p,. - -I' i;( l.t).m . m

(37)

The 0(/;') equilibrium solution to the above equations is given by eqns (20). By perturbing
the equilibrium solution as

v(s. I) =v,(s) +v,(s. I)

lI'(s. I) = wAs) + "',(s. I). (38)

eqns (37) arc linearized in the infinitesimally small perturbations. t'As. f) and ll',(s, f). By
letting L'(S./) = F,.(s) e"'" and w..(s. I) = F".(s) e i

,,,'. the following linear integra-differential
equations arc obtained for the functions F,.(s) and F•. (s).
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-w1F. = {-F:+(I-P,.{t';f (I';F:.+ "";F;:) ds-F;l,(s)

+I';'(Z-;F:. + "";F; - 1: (I';F:. +w;F;) dS)+ F;"k>< -11(s)] ]

fl I' A 11 }',: .' .."." . f ~.' ." ." ~"
-(!J II,. (I ,Fr + II,F... ) ds ds - -I W II, (I ,F,. + II,F... ) ds - G...,(.\),

,,0 ,,, 0

(39)
where

The c.mtilever boundary conditions for eqns (39) 'lre

F,.(O) = F... (O) = 1";.(0) = F:.(O) =0, F;:(I) = 1"::.(1) = O.

M , M ,
G,., ( I) = ,orF,.( I) and G... ( I) = , (lr I·~•. ( I).

m m

(40)

As in the previous section, a set of state varhlbles is introduced to reduce eqns (39) to
a set of ordinary ditlcrential equations that is integrated numerically to determine the
frequencies W" The following Slate variables are defined:

J' F' FXl = *,,: X1 = .,.: .t',' = II';

I,'
.. _ .'" I'" ..\:(\ - [I ..F .. +II ,F,,] ds

o

X M = F;~: :ttl = F::.

Defining

Af , At ,
XI' =G,.•(s)- -···Iw-F,.(s)~ XI1 =G.,.(s)- --"w-F..,(s),• 'm . m

(41)

(42)
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Fig. 6. Natural frequency w, for P = 0.473 and 0,/("'9/') = 16.69 [-- eqns (27) with the
equilibrium Egi~'en by eqns (\7) and (18); -----eqn (27) with the 0(6') equilibrium EO given

by eqns (20) and (22); ••• approl{imate analysis based on eqns (39».
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Fig. 7. N:ltur:al frL"quency "'. for J> = 0.473 :llld /),/(",gl') ''= 16.69 [-- eqns (27) with the
equilihrium f: given hy eqns (17) and (Ill): - ---- eqn (27) with the 0(1: ') L"quilihrium 1::. given

by eqns (20) and (22) ; ••• :Ippwxim:lle analysis baSL-d lin eqns (39)1.

where YI and y~ are, respectively, 7 x I and 6 x I columns with y.(O) = 0 and y~(I) = 0,
eqns (39) are put in the same form as eqn (31). Here. all the elements B,.i of the 13 x 13
malrix B an: zero, excepl BK,S and B~.s. These elements are readily obtained when lhe
expressions for Gn and G., given by eqns (39) are wrillen in lerms of lhe slale variables
defined above. They are given as

(I - fl., HI! -1';11';)

(1-{J,.>2 "+ - 1, +1' ".fl.. . e e

( I 11 (I -{IY I P"
- J,.)/~+ (J,.--- J+ ... I'e"',·

- I

From this point on, the natural frequencies w, were calculated in the same manner as
described at the end of the previous section.

ADDITIONAL RESULTS AND DlSCUSStON

Numerical results have been obtained for the natural frequencies associated with the
first two coupled flexural modes. We denote by w,. the natural frequency for the mode
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Fig. 8. Natural frequency (I)" for P = O.9~6 and D./(n/gl') = 16.69 (-- eqns (:!7) with the
equilibrium Egiven by eqns (17) and (IS); -----eqn (:!7) with the O(e l

) equilibrium E* given
by eqns (:!O) and (:!2); •• - approllimatc analysis based on eqns (39)].
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cl/Ililihrilllll f: givell by cqns (17) .11\1.1 (IK); --- -, - eqn (27) with the 0(1: ') equilibrium £. given

by el/lls (20) and (22); _•• approxilllilte .malysis b'ISl.'t1 on eqns (39)1.
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Fig. 10. N.ltllr.11 frequency m" for I' = IAI9 anu D./(mql') = 16.69 [-- eqns (27) with the
equilibrium £givcn byeqns (17) .mu (IK); -----eqn (:!7) with the O(t') cquilibrium E* given

by eqns (:!()) .mu (:!2); - _. approximate analysis based on I.-qns (39)1.

dominated by the edgewise deflection. and by (I) ... the natuml frequency dominated by the
flatwise deflection. Figures 6-11 show plots of OJ,_ and w.._versus (X for the same parameter
values lIsed to determine the static equilibrium state. and for D~/(m.qIJ) = 16.69. The value
chosen for D~/(m.qIJ). matches that for the beam used in the experiments mentioned earlier
(the experimentul points arc indicuted by circles in Figs 6-11). The values of w. in Hertz.
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Fig. II. Natural frequency (I). for P = 1.419 and D,lmy{') = t6.69 [-- eqns 1~7) with the
equilibrium Egi\'en by eqns (t7) and (18); -----cqn 1~7) with the 0(,-") equilibrium P given

by eqns I~O) and l~:!); _•• approximate analysis based on eqns (39)].

for that beam are obtained by multiplying the non-dimensional values of w by 2.86. These
plots show the frequencies obtained .lS indic'lted in the previous two sections. The solid
lines show the correct natural frequencies obtained from eqns (~7) with the equilibrium
solution E given by the numerical solution to eqns (17) and (18). However. only slight
changes in the n'ltural frequencies determined from such equations occur if one uses. in
those equations. the 0(1: ') approximation. E·. for the equilihrium solution given byeqns
(~() amI (~~). These approximate results arc shown by the- lines in Figs 6 II. Even
for P = 10419 (i.e. when the weight of the lip mass is ahout 24 times largcr than the weight
uf the beam) these 'Ipproximate results are within 3'Yc. of the results shown by the solid
lines. For the smaller v.tlues of P shown in thuse ligures. these 'Ipproxirnate results are
essentially the same as those represented hy the solid lines. All these results arc in very close
agreement with the experimental points and with the finite clement results reported in
Ilinnant and Hodges (191<7) .\Ild in Bauchau and Liu (llJl'\lJ). The tinite clement results arc
essentially indistinguishable from the results illustrated by the solid lines in the figures under
discussion.

The dashed lines - - - shown in Figs 6-11 represent the results obtuincd by the approxi
mate analysis based on eqns (39), and presented in the previous section. While such
'Ipproximate results shown in Figs 6-9 exhibit the correct trend. and arc within 7% of the
correct results for 0 ~ ~ ~ tr./2, the corresponding results shown in Figs 10 and II for
P = 1.419 are clearly wrong. This is especially evident in the results obt'lined for the llatwise
frequency w.. shown in Fig. II for P = 1.419. These results prompted the authors to
question the validity of an analysis based on equations expanded about the undeformed
state of the be.lm, when such .1 state is not an equilibrium (as is the case when P is not
zero). For large values of P. replacing the original eqns (II) by the 0(1: 1

) eqns (37),
expanded about I" = 1\' = (p = 0, is not accurate enough to describe the motion about the
equilibrium E·, which represents the same order approximation for the true equilibrium
state E.

SUMMARY

The st.Hic equilibrium deflections and natural frequencies associated with infini
tesimally small oscillations about the static equilibrium, were studied for .1 cantilevered
beam with a heavy tip mass. The following three points summarize the conclusions in this
study:

(I) The static equilibrium state due to coupled flexure and torsion of an inextensional
beam with a heavy tip mass. was determined by both a numerical two-point
boundary value solver, and by approximate O(r.') and O(r.~) perturbation
solutions. The numerical equilibrium solution. E. exhibits deflections that are
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essentially identical with previously published finite element results, and with
experimental data. Furthermore, the deflections exhibited by the perturbation
solution. E*, agree well with the numerical solution for smaller tip masses but
deteriorate. as expected. as the tip mass is increased. The maximum error reaches
about 8% for the largest tip mass considered, which is about 2~ times the mass of
the beam. The O(e$) solution shows improvement over the 0(<:-') solution. resulting
in a maximum error of less than 4%.

(2) The frequencies associated with small oscillations about the equilibrium state of
the beam have been determined by linearization of the equations of motion about
the static equilibrium state, and by using a transfer matrix technique on the
resulting equations. The natural frequencies thus obtained were also essentially
identical to published finite elements and with experimental results. The effect on
the calculated frequencies of using the approximate solution E*, obtained by a
perturbation method (inste;'ld of the more exact numerical solution E mentioned
above) in the linearized equations, W;'lS also determined. The use of E* instead of
E results in frequencies that differ only slightly from the "exact" ones with the
error becoming larger as the tip mass is increased. However. even for the largest
tip mass considered. the differences are less than 3%.

(3) The use of an alternative way to determine an approximation for the natural
frequencies of the system was also assessed. For this. small del1ections from the
undeformed state were assumed••md the equations of motionwere expanded about
the undeformed state (which is not an equilibrium solution) of the beum. The
resulting equutions. which contain only polynomial nonlinearitics. were then used
to analyze the motion. An <lpproximate equilibrium solution to these equations
was determined by a perturbation expansion and is identical to E*. However,
when these equations arc linearized about E*, the natural frequencies (again
determined by a transfer matrix h,:t.:hnique) can be in error by a t.:onsiderablc
mnount, especially for large values of the tip mass. It is concluded that this type
of itpproximation. which is quite common in the engineering literature. is not
suitable. in general. unless one keeps terms of a mm:h higher order in the expanded
eqmttions. It is emphasized that the error introduced in this approximate analysis
is due essentially to approximating the full nonlinear dilferential equations prior
to the linearization process, rather than the use of an approximate equilibrium
solution.
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APPENDIX: COEFFICIENTS t, FOR EQNS (24) AND (27)

I, = (I -II,II/:.(sin :!</>. sin I/,I:! + /I"';. cos 0,. + (sin: "'r + 11,. cos: "'r -{I)I/I; sin 20r

I: = (/I,-IHI~:.sin :!<j>,.cosl/,.+O;cos:!"',.)COS Or

I, = (II, -IHsin 1"',Cl'S I/,.I:!

I, = -II sin:O,.-(sin:'/J,.+II,cos:"',)Cos:O,.

I, = II sin 0,.

t. = (1-II,II~:.(sin 21.~, sin 0,.)/2

I, = (1-/U(II;.sin 2IP.-'~:CllS:!</>.Cl'SO,.)

I, = -II, sin: Ib,· -CI'" Ib,.

t" ~ (/1, - I ),~:.O:(sin 2ft>. cos 0,.)2 + II .. I~>/J;. sin 1/, - (/1,. cos: Ib, +sin: "', -II,.)I~;:cos 2//, + "'''. Ian //,

I,,, ~ (/1, -llIlVsin 2,p,CUSO,. +//;.cos 2Ib,.)I~;Sin //,

I, I -II I~; CUS //.

I,: ... I '" ··/I.. (,~;. CI" fI,)'

I" (/1, ~ 1l[(,P;'cus'fI, 0;'1 cos 21/J,.-21/1,."0;sin2'/J,cosO,1

I" t, - II 1/1; cos 0,

I" [(/1, I lI"';Sin 21,~,cusll,. ~1I:cus 2</J,) -/IO;lcos II, (AI AIS)


