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Abstract—The problem of determining the equilibrium deflections of a beam with a tip mass. and
the frequency of infinitesimally small oscillations about the beam’s equilibrium state. E. is analyzed.
The beam is able to experience flexure along two normal directions in space (thus. flexure in any
direction) and torsion. Numerical solutions of the full, nonlincar beam static equilibrium equations
are obtained by direct integration of a two-point boundiry value problem. The results obtained wre
compiared with an approximate perturbation expansion solution, £*, for the equilibrium state E.
The frequencies associated with the small oscillations about the equilibrium state are determind by
lincarizing the equations of motion about the cquilibrium state, and by using a transfer matrix
technique on the resulting equations. The etfect on the calculated frequencies of using the approxi-
mate solution £°, obtained by a perturbation method (instead of the more exact aumerical solution
E mentioned above) in the lincarized equations, is assessed. The use of an.alternative way to
determine an approximation for the natural frequencies of the system is also assessed. For this,
smatll motions are assumed and the equations of motion are first expanded about the undetformed
state of the beam, The undeformed state is not a static equilibrium state it gravity is considered.
The resulting equations, which contain only polynomial nonlincarities, are then used to analyze the
motion. After the equilibrium solution to these cquations, £* is determined by a perturbation
expansion ; these same cquations are then lincarized about £* and the natural frequencies are also
determined by a transfer matrix technique. It is shown that the approximation so obtained for the
natural frequencies can be unsatistactory for farge values of the tip mass. All the results obtained
in this paper are compared with published finite elements and with experimental results.

INTRODUCTION

Generally, a structure such as a beam can respond to external loads by exhibiting flexure
in any dircction in space and torsion. For infinitesimally small deformations of prismatic
beams, the linear equations of motion disclose that flexural motions along the two principal
directions are uncoupled. Moreover, if the axis of cross-sectional mass centers coincides
with the elastic axis, the lincarized flexural and torsional motions are also uncoupled.

The investigation of the response of dynamical systems involves the determination of
cigenvalues associated with infinitesimally small motions about the system’s equilibrium
states. When an equilibrium state is “small”, one could determine such frequencies by first
replacing the full nonlincar differential equations of motion by a sct of equations with
polynomial nonlinearities, truncated to a certain degree, and then applying Galerkin's
method to the resulting equations. With N appropriate functions being chosen for the
Galerkin procedure, both the equilibrium solution and the eigenvalues associated with the
perturbed motion would be determined for increasing values of N until convergence is
achieved (see, for example, Ormiston and Hodges. 1972 Dowell er al.. 1977 Crespo da
Silva and Hodges, 1986). It should be noted that the results so obtained also depend on the
order of truncation of the expanded equations. For larger equilibrium solutions, one would
expect that higher and higher order terms would have to be retained in the expanded
equations. in order to increase the accuracy of the results. Thus, to be strict, one should
also experiment with the level of truncation of the expanded equations in order to verify
convergence of the results.
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Fig. 1. A beum segment. the inertial unit vector triad (. £, 2). and the section-fixed unit vector triad
(5o4.5).
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In the present work. the problem of determining the natural frequencies associated
with infinitesimally small flexural-flexural oscillations of a beam with a tip mass is addressed.
Special attention is given to the process of expanding the governing differential equations
of motion of the beam to determine the natural frequencies. This paper is organized in the
following way. First, the nonlincar equations of motion that are valid for arbitrary motion
(except that the strain must be small) involving bending/bending are formulated. Next, the
equilibrium configuration is determined from two methods: (1) from a numerical solution
of the two-point boundary value problem associated with the static part of the full nonlinear
equations of motion; and (2) from an approximate perturbation expansion of the static
part of the equations of motion about the undeformed state of the beam. The results
obtained are compared with each other, with experimental data available in Dowell and
Traybar (1975a.b) and Dowell ¢t al. (1977), and with a finite element analysis presented in
Hinnant and Hodges (1987) and Bauchau and Liu (1989). The natural frequencies associ-
ated with infinitesimally small oscillations about the cquilibrium state of the beam arc
determined by a transfer matrix method, based on a sct of coupled equations obtained by
expansion of the full nonlincar differential equations of motion aboul their equilibrium
solution. This is done in the section entitled ~Response Analysis™. Following this, the
accuriey of analyzing the motion with a set of nonlincar approximate equations, expanded
about the undetormed state of the beam, is then assessed.

EQUATIONS OF MOTION

The differential equations governing the flexural-flexural-torsional motion of inex-
tensional beams, taking into account all the geometric nonlincaritics in the system, were
formulated in Crespo da Silva and Glynn (1978a.b), and in Crespo da Silva (1988a.b) tor
both extensional and inextensional beams. For the sake of completeness, a brief derivation
of the equations for an inextensional beam with a tip mass is presented below.

The beam is assumed to be initially straight and untwisted, of length /, and of constant
mass m per unit length and constant stiffness D, = E1,, D. = EIl; and D; = GJ. The quan-
tities D, and D., where £ is Young's modulus for the material, and /, and /; are principal
cross-sectional arca moments of inertia, are the bending stitfnesses for the beam while GJ
is its torsional stiffness. A schematic of the deformed beim is shown in Fig. 1. Let fu(s. 1),
le(s, 0y and he(s, 1) denote the components along the incrtial directions (v, y,z) of the
displacement of the beam’s centroidal axis C (which is assumed to be coincident with the
beam’s clastic axis) of a cross-section S duc to elastic deformation of the becam. Here, the
unit vectors along any direction are denoted with “hats™ (¥ along x, ctc.) as shown in Fig.
1: s is used to denote arc-length along the beam. non-dimensionalized by /; and ¢ is the
normalized time given by ¢ = t./D,/(ml*) where t is uscd to denote dimensional time. For
incxtensional beams, (I 4+u) 4+ +w'? = | where ( )" = 7&( )/ds. A lumped mass M, of
weight Mg. is located at the beam's tip at s = 1. As can be inferred from Fig. 1. the
gravitational force applicd at s = 1 is equal to Mg[¥ cos 2+ 3 sin a]. where « is the angle
from the vertical axis to the direction 1 = £(0. 7). Therefore. the virtual work associated
with the tip mass is equal to Mg[(cos x) de(1. 1) + (sin 2) dw(1.1)].
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Fig. 2. Angles (. 0. ¢) used to describe the orientation of (.. ]} relative to (%. 5. 3).

The unit vectors [3(s. ). 7i(s. 1). (s, 1)] are aligned with the principal axes of the beam’s
cross-section S at an arbitrary station s. when the beam is undeformed (and if warping were
neglected). The oricatation of the unit vector triad (€.4.0) relative to the inertial unit vector
triad (¥, ¥.2) is described by the three successive rotations (s, 1), 8(s. 1), P(s. 1)] shown in
Fig. 2. If the effect of shear is neglected, it follows that
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Letting 8. = D./D, and fi. = D /D,. the differential cquations of motion can be

obtained from Hamiltons extended principle as in Crespo da Silva and Glynn (1978a), i.c.
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ol = o‘j j {L(c//, 0,0 0 ' 6, ¢, 4) + ';'[I - +u) =" -—w’zl} ds de
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where 2 is a Lagrange multiplicr,

) b h] hi [
P=Mgl*/D, and L=+t +5%)+ ':4

P(r cos 2+ wsin 2) — L(ps + B,p? +B.p?)
is the specific Lugrangean for the motion, normalized by D, /I*. Dots denote differentiation
with respect to non-dimensional time ¢. In the expression for the Lagrangean, p, and p; are
bending curvature components associated with the #f and ¢ directions, respectively. and p,
is the torsion, each normalized by 1//. The expression for the normalized curvature vector,
p= p‘g'?-f-p,,ri+p;:. obtained by inspection of Fig. 2, is given by

p= (¢ =y sin0)E+ (Y cos O sin p+0 cos (b)ﬁ-&-(nﬁ’ cosOcos ¢p—0 sind)l.  (3)

For simplicity. it is assumed that the beam is slender and that its torsional frequencies are
much higher than its flexural frequencies, so that the small effects of rotary inertia and
torsional dynamics are neglected in egn (2). The mass moments and products of inertia of
the tip mass are also neglected for simplicity. By carrying out the variations in eqn (2). the
differential equations of motion and a boundary condition equation governing the motion
of the beam are readily obtained. The normalized differential equations of motion are
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The boundary condition equation obtained from eqn (2) can be written as
. . M N M .
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mi mi
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In the above cquations
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The functions A, A, and o, are given us

= [fi.p:sin8—p, cos O sinp—fp. cos O cos ¢}

I
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A,

(B.p:sinp—p, cos @) —y’[f.p; cos 0+ p, sin U sin ¢+ f,p; sin O cos )
—B.pi—(f, = Dp,p-. %)

I

Equations (4), (5) and (6). and the constraint relation, (1 +u)*+¢> +w’* = 1, govern
the flexural -flexural motions of u beam with a tip mass when the torsional frequencies are
much higher than the bending frequencics.

By making use of the cantilever boundary condition G, (1,4 = ~(M/ml)ii(1, ), the
first of eqns (4) can be integrated once to yield

T 2 &
Als, 1) = — T:*_L»[J‘ (X, t)d\+ M u(l n+4, ‘,w,-!-A,,(,f] (10)

With ¢ and 0 given by eqns (1). substitution of eqn (10) into the second and third of
eqns (4) yiclds the following integro-partial differential equations for ¢(s. 1) and w(s. 1) :
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The boundary conditions for eqns (11) and (5), obtained directly from eqn (6), are
e(0.0) = w(0.0) = *(0.0) = w'(0.0) = (0, 0) = p,(1,0) = p;(1.0) = p;(1.0) = 0,

M M
G.(L.y=p,.~ -’ w(t.e) and G.(L.0) =8.p. — ,7/"“""

where p, and p, are defined as p, = Psina and p, = (P/B,) cos 2.
With «(0. 1) = 0. the inextensibility condition yields for u(s, 1),

(s, 1) = J. (\ﬁ-v': —wi—1)ds. (12)

For the perturbation solution developed later, the variable ¢(s. 1) can be eliminated
from eqns (11) by integrating eqn (5) with the boundary conditions p,(1,1) =0 and
¢(0.1) = 0 to obtain,

B,

- 1
p=¢' —¢sinf=-" 'J‘ Py, Dp(x. 1) dx (13)

B,

s0 that
' B . ﬂb -1 :
P(s, 1) = [’ ¥(x, £)sin 0(x, t) dx—~ -ﬂ_.[: J Palx )p:(x, 1) dx dy. (14)

In the next sections, the equilibrium state of the beam and the natural frequencies
associated with infinitesimally small motions about the equilibrium are determined.

RESPONSE ANALYSIS

To analyze the motion governed by eqns (11) and (5), the normalized dcformations
r{s, 1) and w(s, 1), and the angle (s, ¢) ure expressed as

v(s, 1) = v, (s)+ (s, 1)
wis, ) = w,(s)+w,(s,1)
O(s. 1) = S (5)+ (5. 1), (15)

where v,(s.1), w(s. 1), and ¢,(s.r). denote infinitesimally small perturbations about the
equilibrium solution (¢, w,. ¢,). The subscript “'¢”” will be used from now on to denote an
equilibrium valuc for the corresponding time dependent variable

Equilibrium solution E

The equilibrium solution, E, satisfies the differential equations of motion with the
dynamic terms in eqns (11) identically equal to zero. With the boundary conditions
G, (1) = . p.and G, (1) = p.. eqns (11) can be integrated once to yield
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Equations (16) and (5) are a set of nonlinear, ordinary differential equations that will
be solved with the boundary conditions ¢,(0) = w,(0) = t(0) = w.(0) = ¢.(0) = 0. and
Y1) = 6.(1) = ¢.(1) = 0. To determine the equilibrium solution for the beam. a numerical
solution to these equations is sought. For this, it is convenient to express these equations
in terms of the angles {i.(5). 8,(5). ¢.(5)]. Since

v, = cos b, sin .,
W, = —sin @, an

eqns (16) and (5) may be written as

. . !
(B.p;.sinl,.~p, cos O .sind,—f,p..cos ). cos p,) ~f, p,.[l + %:i {1 —~s)] cosyy.cosfl. =0
(pyecos p.—Pp..sin ) +(f.p. cos O, +p,, sin 0, sin ¢,
. . . . mi
+fopesinfl cos p . —(fop.sinl.sing . +p.cos )] T+ M (1-51=9
Ppl.+(f.~Dpep.. =0, (i8)

where p.,., p,.. p;, are the normalized curvature components at equilibrium obtained dircetly
from egn (3).

The determination of the equilibrium state of the system is now reduced to a two-point
boundary-value problem requiring the integration of eqns (18), in conjunction with eqns
(17) to determine the static equilibrium deflections v, (s) and w.(s). To this end, the following
states are introduced

Xy =0, Xi=w,
=y, xy=0. xx=¢.; xe=7.

Xp=gl xy=0,; xo=¢; (19)

with the boundary conditions x,(0) = 0fori=1,...,6and x;(1) = x, (1} = xy(1} = 0. The
state equations x; = f,{x,,...,x,) were integrated numerically using the double precision
IMSL routine DBVPFD (IMSL, 1987). The state x,, = y.. with xy = p..(+). was introduced
as a convenient way to determine the elastic angle of twist y.(s). The routine DBVPFD
divides the interval 0 < 5 € 1 in a number of grid points, N, and computes the solution
until its estimated erroris smaller than a specified value, The results obtained were essentially
insensitive to values of the error parameter smaller than about 10! and for N greater than
about 20. Values of 10 * and 40, respectively, were used for these parameters. These values
provided at least six digit accuracy in the integration of the above differential equations.
In order to assess the influence of approximations on the equilibrium solution and on
the calculation of the natural frequencies of the system, an approximate solution, £*, to eqns
(16) and eqns (5) is also generated by a perturbation technique. For this, the equilibrium
deflections are assumed to be small and are expanded in a “book-keeping parameter™ ¢ as
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t.(s) = er,,(s) +€3C,2(s) + - - -, w.(5) = ew,,(5) +&°w,,(s) + - -. Since eqn (14) discloses that
@ = O(c%). one then lets ¢.(5) =&°@..+ ---. With p, = ¢p,, and p,, = ¢p..,. eqns (16) then
yield a set of differential equations for the variables v,,, w,,. etc. which are obtained by
equating the coefficients of equal powers of ¢ to zero in the expanded equations. By applying
the given boundary conditions at the O(¢) level, the solutions for ¢, ,(s) and w,,(s) are

[ 1

ml s
N = 2 — —_—
te(8) =pa| s / 56+ i 24(5 4s+6)_

and

mi s*
W, (s) =Pn| s*2—s* /6+—ﬁ 2—4(5‘ 4s+6)d.

The solutions for the differential equations at the O(&') level depend on the solution obtained
from the previous levels. Dropping the book-keeping parameter ¢ for convenience, the
O(:") solutions for r.(s) and w,(s). which were obtained with the aid of MACSYMA
(Pavelle and Wang, 1985; Symbolics, 1987 ; Rand, 1984), are

\)

r.(s) = §p,.s:[l -4 —(v —4\+6):|

37 am e —(3‘ 215" +495* — 3557 - 28)

840

I,l,’ll

- X - 4 26 —42 R
~ 5040, [(5 23,)5% + (1618, — 35)s* + (126 —420p,)s

+ (4903, — 280)s7 +280(1 — f8,)s + 1 588,

2 s . 1
p (5% =T5* + 215" — 3552 +2s.\-)]+0(::’) termsin

M

= Ly <2 _s mi pis? _ Q) _ _
w.(s) = ip.s [I 3 l2M( 4\+6)] 840(3s 205" + 495" ~ 3557 - 28)

_ P I’f y?

—23)s* —350,)5* + (12603, —420)5°
<vio [(5/;,. )55+ (161 = 356,)5* + (1268, —420)s

+(490 —2808,)s% +280(B, — 1)s+ 168

10(8, - 1)? \
_ 1o, =1 (s°=T7s* 4+ 2157 = 3557 + 28s)]+ O(e’) terms in "11 (20)

B, M

From eqns (14) and (3), the corresponding O(e®) solution for the becam's torsion
described in terms of its elastic angle of twist y, is

Pepu (B, = {(v-—l) -1 _ml(s=1)° +1 +(m/)=(s—l)°—|}

el m ) <
7e(8) L p:(mdn = B 12 M 20 M 120

1)

To O(&?). the angle ¢. is given by

6.(5) = 7.(5) — f v"(n)n,mdn—v,m—f’-'”—”—[—2 4( )(s —3s+3)]. @2)

The O(e') terms in mi/M in eqns (20) are quite lengthy and, for this reason, arc not
reproduced here. If the terms in mi/ M are neglected, the above O(¢*) solutions are the same
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ones obtained in Hodges et al. (1988). For large tip masses, the effect of these terms is very
small. To assess the accuracy of the perturbation solution. an O(s*) equilibrium solution
for tip weights up to about 24 times the weight of the beam, was also generated with the

aid of MACSYMA.

Figures 35 display the equilibrium tip deflections ¢ (1), w.(1) and ¢.(1) versus z for
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‘, M D
= 2 = 2 — 1 =
Bo=1502 B =1247. 3= —ts P = 1669

and for the values of P indicated. The parameter values indicated match the values in
Hinnant and Hodges (1987), for an aluminum beam of rectangular cross-section, with a
heavy tip mass, used in the experiments reported in Dowell and Traybar (1975a.b), and in
Dowell e al. (1977). The experimental points are included in these figures. The values of
P =0.473. 0.946 and 1.419 correspond. respectively. to tip weights of I, 2 and 3 Ib, used in
the experiments. which are about eight, 16. and 24 times the weight of the beam. In Fig. 5.
the third orientation angle ¢.(1) [instead of the actual torsion 7,(1}] is plotted since it
corresponds to the O(¢') approximation for the angle measured in Dowell ez al. (1977) [see
the first of eqn (23) in Hodges et al. (1988)].

The numerical solutions of eqns (16) and (5) shown in Figs 3-5 agree with the results
of a finite element analysis presented in Hinnant and Hodges (1987). They also agree with
the results of a finite element analysis presented in Bauchau and Liu (1989). The perturbation
and the numerical results are also in very close agreement with the experimental results
mentioned above. In addition. the results obtained by neglecting the terms in mi//AM are
nearly indistinguishable from those shown in the figures. For smaller values of P, the
simpler. O(c") solution is in very good agreement with the numerical solution. As seen in
Fig. 4. the beam’s tip deflection when 2 = 90" and P = 1.419 is about 40% of the length of
the beam. Even for such a large deflection, the error of the O(¢') approximate solution is
only about 8%.

Natural frequencies

To determine the natural freguencics e, associated with infinitesimally small motions
about the cquilibrium state of the beam, eqns (11) and (5) are lincarized about the equi-
librium determined above, For this, et

Yis ) = () +4.(s.0

0. 1) = 0.{)+0.(s.0)

$(5.0) = () + (5. 1). (23)
With G(5,0) & G, () +G.(5.0). Gu(5.1) & G () +Gu(s,0) and Ay(s.0) & Ay () +

A (3, 0), the following expressions for G, G,, and A, are obtained by lincarizing eqns (11)
and (5) in the infinitesimally small perturbations W (s, 1), 0.(s, 1) and ¢ {s.1):

B, fa-[i +"a ~s>]

i M
Gym e (00, 13y + 10 10+ 15)
cos 0, cos «( : 1, F WAL+ 1)+ 0, cos ¥,

A M (!
+tan g, gle.ndxdy+ — | g(s,npds |,
: Ju mi

mi sin ¢, . )
G., = —-[f“p,.[l + i (1 —s}](ﬂ. o .0, 4+, cos ¢, tan 0,,)«—(sm ¢.tan 0,)G,

g(s. 0}

!
e [0 F 1+ O ) 10,4+ g — 10— 1+ 1,

~ cos 0.
1 ¥ ﬁf {
—~cos i, tan (),[j j glx ydyedy+ — j‘ g(s. 1) d.v]
. Jo mi Jq
Ao =100, 400D, + 1,0+t~ + BT =0, (24)

where
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g(s, 1) = Y, siny, cos 8,4+ 0,cos Y, sin 6,. (25)

The coefficients ¢, for i = 1,..., 15, are functions of the equilibrium values of the defor-
mation variables only. Their expressions are given in the Appendix.

To calculate the frequencies w;, one could make use of a number, N, of cantilever
modes for M = 0, as in Hodges and Ormiston (1976). to replace the linearized counterpart
ofeqns (11) and (5) by 3N second-order differential equations. In this paper, the frequencies
w, are determined by direct numerical integration of a two-point boundary value problem
and by using a transfer matrix technique, as outlined below. The advantage of doing so is
‘that one can circumvent a series representation for the field variables and directly obtain a
set of eigenfunctions. Each eigenfunction determined in this manner represents the linearized
motion for a particular mode.

By assuming a solution to the linearized equations as

Y. (s.t) = F,(5) et
0.(s.8) = Fy(s)e™
},(s.1) = Fy(s)e™', (26)

and by writing G(s.0) = F; (9)e", and G, (s.¢) = F(,«“(s)e""’. the following ordinary
differential equations for the functions F (s), Fu(s) and F,(s) are then obtained, after
making usc of the relations ¢ = cos #sin ¢ and v’ = —sin # (note that, for simplicity in
notation. dummy variables of integration are not written explicitly from now on),

w® f (Fysin ¢ sin 0, — F, cos . cos 0,) ds
0

gl e ™ -y
M

B {cos 0, cos ¥, 0P+ 0P+ L Fy +15Fy) + c'os‘b:ébgﬂu};_m”y:("')
[ M i ’
—’tan 'Pe[j J 92 d-"‘“"'"‘f 92 ds]} & Fg (9),
s JU ml 0 o
wzf F,cos B, ds
0

! i .
= {—ﬂ,,p,‘l:l + %17 (1 —s)](F., CE(I',:;I;; + F, cos §, tan 0,)— F; (siny tan®,)

[(’(,Fu‘{"I7F¢+’NF6+13F2)I+’9,:0+’|"F¢-16F:)—I|F’w+1||F,’b]

cos 0.
1 s A’[ 1 ’
+w’cos Y. tan 0, g.dsds+ —; | g.dslp & Fy (5)
e Jo ml )y -
B.Fo=tsFy vt P+t Fy+0,Fy+1t5F, =0. 27
In eqns (27),
g:(s) = F,siny,cos 0.+ Fycos y_sin 0.. (28)

The cantilever boundary conditions for eqns (27) are
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Fy(0) = F,(0) = F,(0) = Fy(l) = F (1) = Fy(1) = 0,
1
F; (1) = w:’%f (F, cos y, cos 8, — F,sin , sin 0,) ds
0
and

.M (!
FE()=-w ;1'[’ F,cos 8, ds.

The eigenfunctions F,(s). Fy(s) and F,(s), and the frequencies w,. are obtained by
direct integration of eqns (27). For this. a set of state variables is introduced so that these
integro-differential equations are written as a set of ordinary differential equations. The
following states are defined :

.T|=F¢J: x2=F¢,: .V3=F¢
s
x;=| (Fysiny,sinf,—F,cos Y, cos0,)ds
0

o

X5 = | (Fycos y,sin@,+ F,siny, cos 8,) ds
0

(s

Xo = | Fycos@,.ds
JO

xo=F; xy=Fy; xy=F,

|
Xig = —J. .\'5d."

w'M
Y= Fo b
M
X2 = F(; + (’l{’"" Xg- (29)
R ml
The cantilever boundary conditions for these states are x(0) =0 for i=1,..., 6, and
x(Hh=0forj=7,...,12
Defining
. T A Yi
X =[x....,. Yoo X7,...,X)0] & y (30)

where y, and y, are, respectively, 6 x | columns with y,(0) = 0 and y,(1) = 0, eqns (27) can
be written as

X'(s) = A(s)x(s) + B(s)x(1). 31

All the elements 8, ; of the 12 x 12 matrix B arc zero, except B, s, By s and B, .
The solution to eqn (31) is

x(s) = O(s)x(0) + [0(5) J‘I &~ '(1)B(1) dt:lx(l). (32)
0

where ©(s) satisifes the differential equation
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D'(s5) = A(5)D(s) (33)

with the initial condition ®(0) = 7, the 12 x 12 identity matrix. Also, it is easily verified that

5

F(s) & ¢(S)f @ '(1)B(r)dr (34)
0

satisfies the differential equation
F(s) = A(s)F(s) + B(s) 35)

with F(0) = 0. the 12 x 12 null matrix. Only the three elements B, 5, By s and By s in column
five of the matrix B(s) are non-zero.
From eqn (32) one obtains.

. YI“)] -1 [ 0 ]A[Kl.l Kl.:][ 0 :l
<l) = — - a 3
X [ o |TU=FOION 0% Lk Kxlly: (36)

Equation (36) discloses that for y,(0) to be non-zero the characteristic equation det K, , = 0
for the 6 x 6 “transfer matrix™ K, , has to be satisfied. The methodology presented above
provides an iterative technique for determining the natural frequencics. . For this, one
chooses a starting value w* for e, integrates eqns (33) and (35) numerically from s = 0 to
s = 1, calculates det (K5 ;). which is dependent on w, and then iterates on the value of o
until |det K] is smaller than a small pre-assigned quantity. This procedure was
implemented using the IMSL package (IMSL, 1987) on a Sun 3 serics computer. For chosen
values of

M D,
(”"' B P ml ~ mgl* P)'

w was determined as a function of « by using the double precision IMSL routine DZREAL
to find the real zeros w, of the function defined as det (K, 2(w)). The routine DZREAL has
two convergence criteria. The first requires that the magnitude of the function be less than
a pre-selected value ERRABS, and the second requires that the relative change of two
successive approximations for @ be less than another pre-selected value, ERREL. Con-
vergence is achieved when either criterion is satisfied. The results obtained were essentially
insensitive to vilues of ERRABS and ERREL between 10 "* and 10 7'°. To determine K, »,
cach of the 12 columns u,(s) of eqn (33) was integrated from s = 0 to s = 1, with all the
clements of u,(0) equal to zero except the one in the ith row. Integration of three more
differential equations, given by the fifth column of eqn (35), was performed to determine
the fifth column of the matrix F(1). The double precision IMSL routine DIVPAG, which
uses an implicit Adams-Moulton algorithm, was used to integrate the differential equations
with an error control parameter sct to 10 *'°. Again, no noticeable changes in the results
were detected for values of that control parameter as low as 107°,

A discussion of all the results is presented after the next section, where an alternative
calculation of the frequencies is presented and its validity is then assessed.

RESPONSE ANALYSIS BASED ON APPROXIMATE EQUATIONS OF MOTION EXPANDED
ABOUT THE UNDEFORMED STATE

Equations (11) are valid for arbitrarily large deformations, as long as the strains are
infinitesimally small. An alternative technique to analyze the motion. valid for “small™
motions, consists of letting v(s.f) = er,(s.1) and w(s.r) = ew (s, ) in eqns (l1). with
¢ = O(c") obtained from eqn (14) in terms of ¢(s. £) and w(s. ), and then expanding eqns



Response of a cantilever with a tip mass 5717

(11) at least to O(c®). The resulting equations are then used to analyze the motion of the
beam. The O(¢’) expanded equations, obtained as indicated above, are given below. The
book-keeping parameter ¢, and the subscripts are omitted for convenience in the notation:

| s
={ B —(1-8, )l: "J 7 "ds+v;"'j r"w’ds]
0
“_ﬂ) [ Jj "y "dsds] =Bt +w ")
+ = J[J (" +w )ds] ds+ f(l 4wty ds} ={- B.p,
1 (]
G, = {-n"’-}-(l—ﬂ )[ ‘[ "u"ds+:.""[ w”v’ds]
1 0
(l-ﬁ) [ J J. v"w" ds ds] —w'@ " +nw'n")
e L I O T T G
+ ~2~J‘ ['[) (" +w ')d.\':l ds+ i w J; @+w) ds} =W— ﬁpw. 37

The boundary conditions for these equations are

v(0,0)) =w(@0. ) =00, ) =w(0.0=0. "(1.)=w"(l,)=0

M M
G.(L,)=p.— i Ww(l.e) and G.(1.0) =f.p.— ;;[-i"(l.t).

The O(z") equilibrium solution to the above equations is given by eqns (20). By perturbing
the equilibrium solution as

v(s, ) = v.(s)+v,(s,0)
wis, 1) = w.(s) +w.(s,0), (38)

eqns (37) are linearized in the infinitesimally small perturbations, v,(s, 1) and w,(s,1). By
letting o(s, 1) = F.(s)e" and w,(s.1) = F,(s)e"", the following linear integro-differential
equattions are obtained for the functions F,(s) and F,(s),

[}
~w'f, = {—/3_.-1’.5"—(1 —/i.-)[ﬂj (CeF+wiF)) ds

—FoI(s)+w" f (F, +w.F) ds+ F,:.”I:(s)]
0

=1 [ '
+ —7}——-—- wy (WIF.+w.F)dsds—F,I(s)
7 0 Js .

=Bt L+ e F Wi FL+ wiFL) = B (el +wiw)) F

. L M . 1 ’
-—w'tﬁf J (C.F.+w.F.)dsds— :—"7 wt, | (C.F.+w.F.) ds} A Gl (s),
At 0 0
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1
-o’F, = {—FJY’+(I —ﬁ.-)[vZJ‘ (e FL+w F)ds— FI1i(s)
+u (r;F Wl F— j " (C F, +w.F)) ds)-l— Flleow, -1 :(s)]]
o
1-8,)°

B.

—wi (L F el F 4wl FLwiF Y — (el +winl) F,,

4+

[ 5 1 ’
t.:J‘ J (veFr+wiFDds dS‘F:'II’(s)J

(1]

. [ A . 1 ’
“(U“‘t‘:.f (. F.4+w.F,)dsds— ;,17 urw",f (eoFr+woF,) ds} & G..(v.
Y o (1]

(39)
where
i

I{(s) = —f row, ds
I){s) = J‘ » vyl ds

1
L(s) = j 1, ds. (40)

1

The cantilever boundary conditions for eqns (39) are

F(0)=FA0) = F(0) = F.(0) =0, FI{()=F.(1)=0.

M

G.(D=— w'F(ly and G. (1) = M w P (1).
ml "

i
As in the previous section, a set of state variables is introduced to reduce egns (39) to

a set of ordinary differential equations that is integrated numerically to determine the
frequencices w,. The following state variables are defined :

xy=F xa=F., x,=F,; x;=F,
.

Xs=| [t.F.+w.F,]ds
(1]

(s«

Ne= | [tIF. +w.F}ds
i

s

.
Xy = J [teFn+wiFldsds: xy=F; xy=F,
1

Jo

PS T
X = | [IFL+wiF{]ds; xy = J. Xsds
i ]

W F.(8); xy =G (5)— ?{ w*F(5). 4n

M
Xi: =G (s)— oy nl

il
Defining

x={x.....‘x;:.\‘s......\'.;]T& [ilJ (42)
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Fig. 6. Natural frequency o, for P = 0.473 and D,/(mgl") = 16.69 [ eqns (27) with the
equilibrium E given by eqns (17) and (I8); ———-— eqn (27) with the O(¢*) equilibrium £* given
by eqns (20) and (22); - - - approximate analysis based on eqns (39)].
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Fig. 7. Natural frequency o, for P = 0.473 and D,/(mgl') = 16.69 [ eqns (27) with the
cquilibrium £ given by eqns (17) and (18) ; — - —~—eqyn (27) with the O(¢') equilibrium E* given
by eqns (20) and (22): - - - approximate analysis bised on egns (39)).

where y, and y, are, respectively, 7x 1 and 6 x | columns with y,(0) =0 and y,(1) =0,
egns (39) are put in the sume form as egn (31). Here, all the elements B, of the 13x 13
matrix B are zero, except By s and B, . These elements are readily obtained when the
expressions for G,, and G, given by egns (39) are written in terms of the state variables
defined above. They are given as

b l e ;r : o
L B A
Bys _ A/h”z e ! vl
I:Bq.s] B ml (ll ”";(){: o) 4w I:bs';]' (43)
- + (_ﬂ/'~ I +uw, —

From this point on, the natural frequencies w, were calculated in the same manner as
described at the end of the previous section.

ADDITIONAL RESULTS AND DISCUSSION

Numerical results have been obtained for the natural frequencies associated with the
first two coupled flexural modes. We denote by w, the natural frequency for the mode

SAS 27:8-4
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Fig. 8. Naturul frequency . for P =0.946 and D,/{mgl") = 16.69 | eqns (27) with the
equilibrium E given byeqns (17) and (18); —~— — ~ e eqn (27) with the O(c*) equilibrium E* given
by eqns {20 and (22): -- - approximate analysis based on eqns (39)].
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Fig. 9. Natural frequency on, for £ = 0.946 and D,j(mgl'} = 16.69 |- cgns (27) with the

cquilibrium & given by eqns (17) and (18) ) —~ ~— - — eqn (27) with the Oz} equilibrium £* given
by cyns (20) and (22); - - - approximate analysis based on egns (39)].
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Fig. 10, Natural frequency o, for P = 1419 and D, /(myl") = 16.69 | eqns (27) with the
cquilibrium £ given by egns (17) and (18} — - — = —eqn (27) with the 0(2") cquilibrium £* given
by eqns {20) and (22); - - - approximate analysis based on eqns (39)}.

dominated by the edgewise deflection, and by w,, the natural frequency dominated by the
flatwise deflection. Figures 6-11 show plots of ¢, and w,, versus « for the same parameter
values used to determine the static equilibrium state, and for D, /(mgl*) = 16.69. The value
chosen for D,/(mgl"), matches that for the beam used in the experiments mentioned earlier
{the experimental points are indicated by circles in Figs 6-11). The values of w, in Hertz,



Response of a cantilever with a tip mass 581

0.45

0.40

De

0.35

0.30 " y —a
00 10.0 200 300 400 500 600 700 800 80.0

o (degrees)

Fig. 11. Natural frequency w, for P = 1.419 and D,/(mgl*) = 16.69 | eqns (27) with the
equilibrium £ given by eqns (17) and (18) : — - — —— eqn (27) with the O(z*) equilibrium E* given
by eqns (20) and (22): - - - approximate analysis based on eqns (39)].

for that beam are obtained by multiplying the non-dimensional values of w by 2.86. These
plots show the frequencies obtained as indicated in the previous two sections. The solid
lines show the correct natural frequencies obtained from eqns (27) with the equilibrium
solution E given by the numcrical solution to eqns (17) and (18). However, only slight
changes in the natural frequencies determined from such equations occur if one uses. in
those equations, the O(e') approximation, £*, for the equilibrium solution given by eqns
(20) and (22). These approximate results are shown by the - - - lines in Figs 6-11. Even
for P = 1.419 (i.c. when the weight of the tip mass is about 24 times larger than the weight
of the beam) these approximate results are within 3% of the results shown by the solid
lines. For the smaller values of £ shown in those figures, these approximate results are
essentially the sume as those represented by the solid lines. All these results are in very close
agreement with the experimental points and with the finite clement results reported in
Hinnant and Hodges (1987) and in Bauchau and Liu (1989). The finite element results are
essentially indistinguishable from the results illustrated by the solid lines in the figures under
discussion.

The dashed lines - - - shown in Figs 611 represent the results obtained by the approxi-
mate analysis based on eqns (39), and presented in the previous section. While such
approximate results shown in Figs 6-9 exhibit the correct trend. and are within 7% of the
correct results for 0 € a < 7/2, the corresponding results shown in Figs 10 and 11 for
P = L1419 are clearly wrong. This is especially evident in the results obtained for the flatwise
frequency o, shown in Fig. 11 for P = 1.419. These results prompted the authors to
question the validity of an analysis based on equations expanded about the undeformed
state of the beam, when such a state is not an equilibrium (as is the case when P is not
zero). For large values of P, replacing the original eyns (11) by the O(:') eqns (37).
expanded about ¢ = w = ¢ = 0, is not accurate enough to describe the motion about the
cquilibrium E*, which represeats the same order approximation for the true equilibrium
state £.

SUMMARY

The static equilibrium deflections and natural frequencies associated with infini-
tesimally small oscillations about the static equilibrium, were studied for a cantilevered
beam with a heavy tip mass. The following three points summarize the conclusions in this
study: ‘

(1) The static equilibrium state due to coupled flexure and torsion of an inextensional
becam with a hcavy tip mass, was determined by both a numerical two-point
boundary value solver, and by approximate O(z') and O(e*) perturbation
solutions. The numerical equilibrium solution. E, exhibits deflections that are
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essentially identical with previously published finite element results, and with
experimental data. Furthermore, the deflections exhibited by the perturbation
solution, E*, agree well with the numerical solution for smaller tip masses but
deteriorate, as expected, as the tip mass is increased. The maximum error reaches
about 8% for the largest tip mass considered. which is about 24 times the mass of
the beam. The O(&*) solution shows improvement over the O(¢”) solution. resulting
in 2 maximum error of less than 4%,

(2) The frequencies associated with small oscillations about the equilibrium state of
the beam have been determined by linearization of the equations of motion about
the static equilibrium state. and by using a transfer matrix technique on the
resulting equations. The natural frequencies thus obtained were also essentially
identical to published finite elements and with experimental results. The effect on
the calculated frequencies of using the approximate solution E*, obtained by a
perturbation method (instead of the more exact numerical solution £ mentioned
above) in the linearized equations. was also determined. The use of £* instead of
E results in frequencies that differ only slightly from the “exact™ ones with the
error becoming larger as the tip mass is increased. However, even for the largest
tip mass considered, the differences are less than 3%.

(3) The use of an alternative way to determine an approximation for the natural
frequencies of the system was also assessed. For this. small deflections from the
undeformed state were assumed, and the equations of motion were expanded about
the undeformed state (which is not an equilibrium solution) of the beam. The
resulting equations, which contain only polynomial nonlinearitics, were then used
to analyze the motion. An approximate equilibrium solution to these equations
was determined by a perturbation expansion and is identical to £*. However,
when these equations are lincarized about £*, the natural frequencies (again
determined by a transfer matrix technique) can be in error by a considerable
amount, especially for large values of the tip mass. 1t is concluded that this type
of approximation, which is quite common in the engineering literature, is not
suttable, in general, unless one keeps terms of a much higher order in the expanded
cquations. It is emphasized that the error introduced in this approximate analysis
is due essentially to approximating the full nonlinear differentiaf cquations prior
to the lincarization process, rather than the use of an approximate cquilibrium
solution,
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APPENDIX: COEFFICIENTS ¢, FOR EQNS (24) AND (27)

= (1 =F0.(sin 2, sin 0) 2+ B.¢. cos 0, +(sin’ ¢, + fi, cos” ¢, — f. W, sin 20,
1. = (B, — D sin 2, cos 8, +0. cos 2¢,) cos 0,

te = (ff, — D(sin 2, cos 0.):2

1, = —f sin* 0, —(sin* P+ f, cos* ¢, ) cos™ 0,

to=fisinf,

t, = (1 —f W (sin 2, sin 0,)/2

1, = (=B U sin 2p_ —f cos 2p_cos 0))

to= —ff sind ¢, —cos’

Lo = (B — Dt (sin 2, cos 0,02+ f1 b, sin O, —(f, cos™ b, +sin’ b, —ff ) cos 20, + 4, tan O,
fy = (= D sin 2p, cos O, + 0, cos 2p . sin 0,

= =fgicosh,
e Tt R U Y
foo < DGE cos’ 0 027y cos 24p, = 240 sin 2, cos 0, ]
fia -t - Blcos ),

Ly = [ - Dp sin 2, cos O, + 0 cos 2p,) =0 }cos 0, (Al A1S)



